The Goldstine Theorem for asymmetric normed linear spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Uniform Boundedness Theorem in Asymmetric Normed Spaces

and Applied Analysis 3 The condition of right K-completeness for X, p leaves outside the scope of this theorem an important class of asymmetric normed spaces, the asymmetric normed spaces associated to normed lattices because these spaces are right K-complete only for the trivial case 13 . In this paper, we give a uniform boundedness type theorem in the setting of asymmetric normed spaces which...

متن کامل

A Fixed Point Theorem in Non-archimedean Asymmetric Normed Linear Spaces

Jointly with H.-P. Künzi we started investigating a concept of spherical completeness in ultra-quasipseudometric spaces which we called q-spherical completeness. In this article we study fixed point theorems in a space X endowed with a non-Archimedean asymmetric norm structure. Here we extend certain results of Petalas and Vidalis and Kirk and Shahzad.

متن کامل

A Bernstein-Markov Theorem for Normed Spaces

Let X and Y be real normed linear spaces and let φ : X → R be a non-negative function satisfying φ(x+ y) ≤ φ(x) + ‖y‖ for all x, y ∈ X. We show that there exist optimal constants cm,k such that if P : X → Y is any polynomial satisfying ‖P (x)‖ ≤ φ(x)m for all x ∈ X, then ‖D̂kP (x)‖ ≤ cm,kφ(x) whenever x ∈ X and 0 ≤ k ≤ m. We obtain estimates for these constants and present applications to polyno...

متن کامل

The Finite Dimensional Normed Linear Space Theorem

The claim that follows, which I have called the nite-dimensional normed linear space theorem, essentially says that all such spaces are topologically R with the Euclidean norm. This means that in many cases the intuition we obtain in R,R, and R by imagining intervals, circles, and spheres, respectively, will carry over into not only higher dimension R but also any vector space that has nite dim...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2009

ISSN: 0166-8641

DOI: 10.1016/j.topol.2009.06.001